Learn to decompose multiobjective optimization models for large‐scale networks

نویسندگان

چکیده

Abstract Infrastructures can be modeled as large‐scale networks consisting of nodes and arcs, making network optimization a popular modeling option for arising problems. In specific, providing timely restoration plans interdependent infrastructures facing disruptions has been challenge decision makers. this study, we focus on geospatial (co‐location) functional interdependencies to capture the impact cascading failures infrastructure systems. The dynamics real are more complicated captured by one objective function. Therefore, define three functions in pillars sustainability: (a) economic, (b) social, (c) environmental. To solve multiobjective model, develop learn‐to‐decompose framework, evolutionary algorithm based decomposition module Gaussian process regression (GPR) periodically learn from obtained Pareto front guide search direction. We also included heuristic address two significant challenges restoring infrastructures: island scenario co‐location interdependencies. applied proposed framework benchmark problems water transportation City Tampa, FL. carried out sensitivity analyses monitor performance GPR different kernel functions. provided insights makers finding trade‐off between fortification (proactive) (reactive) costs. result demonstrates is feasible applicable networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization for Problem Classes – Neural Networks that Learn to Learn –

The main focus of the optimization of artificial neural networks has been the design of a problem dependent network structure in order to reduce the model complexity and to minimize the model error. Driven by a concrete application we identify in this paper another desirable property of neural networks – the ability of the network to efficiently solve related problems denoted as a class of prob...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Network Models for Multiobjective Discrete Optimization

This paper provides a novel framework for solving multiobjective discrete optimization problems with an arbitrary number of objectives. Our framework formulates these problems as network models, in that enumerating the Pareto frontier amounts to solving a multicriteria shortest path problem in an auxiliary network. We design tools and techniques for exploiting the network model in order to acce...

متن کامل

Multiobjective Optimization using GAI Models

This paper deals with multiobjective optimization in the context of multiattribute utility theory. The alternatives (feasible solutions) are seen as elements of a product set of attributes and preferences over solutions are represented by generalized additive decomposable (GAI) utility functions modeling individual preferences or criteria. Due to decomposability, utility vectors attached to sol...

متن کامل

A Framework to Decompose GSPN Models

This paper presents a framework to decompose a single GSPN model into a set of small interacting models. This decomposition technique can be applied to any GSPN model and a generalized tensor algebra (Kronecker) representation can be produced automatically. The numerical impact of all the possible decompositions obtained by our technique is discussed. To do so we draw the comparison of the resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Transactions in Operational Research

سال: 2022

ISSN: ['1475-3995', '0969-6016']

DOI: https://doi.org/10.1111/itor.13169